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Abstract: Well-formed visual hallucinations (VH) are
common in patients with Parkinson’s disease (PD). The
pathophysiology of VH in PD is unknown but may
involve structures mediating visual processing such
as the inferior temporal cortex. Serotonergic type 2A (5-
HT2A) receptors have been linked to many psychiatric
disorders, including psychosis. We hypothesized that
enhanced 5-HT2A receptor levels may be involved in VH
in PD. Autoradiographic binding using [3H]-ketanserin
and spiperone, to define 5-HT2A receptors, was per-
formed in 6 PD patients with VH, 6 PD patients without
VH, and 5 healthy, age-matched controls. The cerebral
regions studied included the orbitofrontal cortex, infero-
lateral temporal cortex, motor cortex, striatum, and sub-
stantia nigra. There was a significant (45.6%) increase in
the levels of [3H]-ketanserin binding in the inferolateral
temporal cortex of PD patients with VH when compared

with PD patients without VH (54.3 6 5.2 fmol/mg vs.
37.3 6 4.3 fmol/mg, P 5 0.039). Additionally, there
was a significant increase in the levels of 5-HT2A recep-
tors in the motor cortex of all PD patients taken as a
group when compared with controls (57.8 6 5.7 fmol/
mg vs. 41.2 6 2.6 fmol/mg, P 5 0.0297). These
results suggest that enhanced 5-HT2A-mediated neuro-
transmission in the inferolateral temporal cortex, a critical
structure in visual processing, might be associated with
the development of VH in PD. Our results provide new
insights into the pathophysiology of VH in PD and pro-
vide an anatomical basis to explain why compounds with 5-
HT2A antagonist activity are effective at alleviating this
debilitating complication. � 2010 Movement Disorder
Society
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The cardinal motor manifestations of Parkinson’s

disease (PD), rest tremor, rigidity, and bradykinesia,

are secondary to dopamine (DA) deficiency in the

striatum.1 However, a range of non-motor symptoms,

including psychosis, are increasingly recognized in PD.

Such symptoms are often difficult to manage and rep-

resent a major cause of morbidity. Psychotic manifesta-

tions can begin as vivid dreams and progress to well-

formed visual hallucinations (VH).2–4 VH affect up to

60% of patients with PD.5,6

VH in PD have often been linked to DA receptor

stimulation by dopaminergic drugs. However, not all

patients with PD develop VH on dopaminergic medica-

tion, and often symptoms will continue despite a dose

reduction. In addition, there is no consistent correlation

with dose or type of dopaminergic drug.3,7,8 Thus, VH

in PD are no longer perceived as a pure drug-induced

effect and are more likely due to a neuropathological

dysfunction. One such target may be serotonin (5-HT)-

mediated neurotransmission.

Traditionally, 5-HT has been considered to have a

role in mood.9,10 5-HT2 agonist actions are implicated

in psychotic symptoms associated with the use of

hallucinogens.11 The atypical antipsychotics clozapine

and quetiapine are both currently used to treat VH in
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PD, because of their low propensity to worsen motor

symptoms.12 In addition to being DA D2 receptor

antagonists, they are also 5-HT2A/2C receptor antago-

nists.13,14 This raises the hypothesis that their effects

on VH may reflect a 5-HT rather than DA action.

To date, the neural mechanisms underlying VH and

potential site of 5-HT2A-mediated action in PD are

unknown. However, the inferior temporal cortex

appears to be involved in visual processing of complex

features.15 This region may thus be involved in media-

ting the typical well-formed and complex VH charac-

teristic of PD. Indeed, pathological studies have

reported increased Lewy bodies in the inferolateral

temporal cortex in PD patients with VH.16 Of interest,

a basal ganglia–thalamo–cortical loop has been

described in primates that may be involved in visual

processing.17 This loop includes the inferolateral tem-

poral cortex, substantia nigra (SN) pars reticulata, stria-

tum, and the medial portion of the ventral anterior nu-

cleus of the thalamus. Thus, reduced activity in the

medial SN pars reticulata, as a result of changes to the

striatopallidal pathways in advanced treated PD, may

lead to increased thalamocortical excitatory drive and

VH,17 in a similar way to the neural mechanism under-

lying the expression of levodopa-induced dyskinesia

(LID) in PD.18

We hypothesized that 5-HT2A receptors within the

inferolateral temporal cortex are involved in mediating

VH in PD. This autoradiographic binding study meas-

ured 5-HT2A receptor levels in five brain regions of

PD patients experiencing VH compared with PD

patients without VH and age-matched controls using

[3H]-ketanserin, a 5-HT2A receptor antagonist.19

PATIENTS AND METHODS

Tissue Collection

Human postmortem tissue sections were obtained

from the United Kingdom Parkinson’s Disease Society

Tissue Bank. The University Health Network Institu-

tional Review Board approved the handling of the

postmortem tissue. Tissue was collected according to

established protocols20 and stored at 2808C. Sections
from 6 patients with a clinicopathological diagnosis

of idiopathic PD and VH, 6 PD patients without VH,

and 5 healthy, age-matched controls were used

(Table 1). The neuropathological diagnosis was based

on international neuropathological consensus criteria

for the diagnosis of definite PD (http://www.ICDNS.

org). The clinical diagnosis of PD was made using

standard criteria,21 and clinical details were provided

from medical records by the tissue bank staff. Sections

were 12-lm thick, unfixed, mounted on SuperFrost

Plus slides, cut on the coronal plane, and stored at

2808C. Sections from inferomedial frontal cortex

(Brodmann area 11; BA11), inferolateral temporal cor-

tex (BA21), primary motor cortex (BA4), striatum, and

SN (compacta and reticulata) were studied (Fig. 1).

There were no significant differences in postmortem

interval (14.7 6 3.0 hours for PD with VH, 21.8 6
3.9 hours for PD without VH, and 16.3 6 4.5 hours

for controls; P 5 0.28, one-way ANOVA) or brain

weight (1360 6 66 g for PD with VH, 1319 6 79 g

for PD without VH, and 1349 6 48 g for controls;

P 5 0.89, one-way ANOVA).

[3H]-Ketanserin Autoradiographic Binding

Sections were removed from the freezer and allowed

to dry at room temperature overnight. The following

day, sections were preincubated in 50 mM Tris buffer

(pH 7.4) for 30 minutes at room temperature. Follow-

ing the removal of the preincubation buffer, sections

were incubated for 1 hour at room temperature in a

50 mM Tris buffer (pH 7.4) solution containing

2.5 nM [3H]-ketanserin (specific activity: 67 Ci/mmol;

PerkinElmer, Waltham, MA) to define total binding.

As ketanserin has some potential to bind to alpha-1

adrenergic receptors (a1) and to the vesicular mono-

aminergic transporter (VMAT),19,22,23 1 lM prazosin

and 1 lM tetrabenazine (Tocris, Ellisville, MO) were

added to the incubation buffer.24,25 Nonspecific binding

was defined by incubating sections with 10 lM spiper-

one (Tocris, Ellisville, MO), which has an affinity in

the nanomolar range for the 5-HT2A receptors.26 Fol-

lowing incubation, sections were washed twice for 10

min in 48C Tris buffer (pH 7.4). Sections were then

dipped for 10 seconds in 48C deionized water and

allowed to dry overnight at room temperature.

Autoradiographic images for optical density analysis

were obtained by apposing sections to [3H]-sensitive

films (Biomax MR; Sigma, St-Louis, MO) for 50 days at

48C with [3H]-microscale standards (GE Healthcare Life

Sciences, Pittsburgh, PA). Images were also obtained

using a MicroImager (BioSpace Lab, Cambridge, MA),

as this allowed greater anatomical resolution.

Autoradiograms were analyzed using MCID 6.0

Elite Image analysis system software (InterFocus Imag-

ing, Linton, UK). Densitometric analysis of each afore-

mentioned brain region was performed, whereby a ref-

erence curve of radioactivity versus optical density was

calculated from alpha-emitting [3H]-microscale stand-

ards and used to quantify the intensity of signal as nCi
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per mg of tissue. Background intensity was subtracted

from each reading. For each brain area, three consecu-

tive sections were processed to determine the total

binding and one to evaluate the nonspecific binding.

Both total and nonspecific binding were calculated in

the same way, and nonspecific binding was subtracted

from total binding to give specific binding. Intensity of

signal was converted into fmol of receptor per mg of

tissue. During the analytical process, the investigator

was blinded to the clinical status of the patients. Illus-

trations were handled with the Adobe Photoshop 7.0.1

software (Adobe, San Jose, CA).

Statistical Analysis

Clinical characteristics were compared using appro-

priate parametric unpaired Student’s t or ANOVA tests

or nonparametric Mann-Whitney U or Kruskal-Wallis

tests. One-way ANOVA followed by Tukey’s post hoc

test were used to compare specific binding between the

three groups for each region of interest. Two-tailed

unpaired Student’s t test was performed to compare spe-

cific binding between the pooled parkinsonian patients

and the controls. Significance was assigned when P <
0.05. Statistics were computed with the SPSS 13.0 for

Windows (SPSS, Chicago, IL) and GraphPad Prism 5.02

(GraphPad Software, La Jolla, CA) softwares.

RESULTS

Patient Characteristics

Clinical features of patients are summarized in Table 1.

The groups were matched for age (mean (6SD) age of

death was 80 6 4.5 years for PD with VH, 80 6 4.7

years for PD without VH, and 78.6 6 16.0 years for

controls; P 5 0.96, one-way ANOVA test). Each PD

group contained only 1 female individual, whereas the

control group contained 2 (P 5 0.61, Kruskal-Wallis

test). The two PD groups were matched for disease

duration (12.2 6 6.7 years for PD with VH, 9.8 6 4.9

years for PD without VH; P 5 0.50, unpaired Stu-

dent’s t test). No ratings for disease severity were per-

formed prospectively in these patients; however, dis-

ease severity according to Hoehn and Yahr scale27 was

retrospectively scored using clinical information (3.5

6 0.5 for PD patients with VH and 3.0 6 0.375 for

PD patients without VH, median 6 semi-Q; P 5 0.65,

Mann-Whitney U test) (Table 1). All patients in the

PD with VH group and 4 of the nonhallucinating group

had levodopa-induced motor fluctuations. VH were

recorded as present or absent according to clinical

charts; no rating scale was used premortem to deter-

mine severity. Cognitive impairment, defined as either

mini-mental state examination less than 26 or docu-

mented memory issues or dementia in the clinical

records, was noted in 4 of the 6 PD patients with VH,

2 of 6 in the nonhallucinatory group, and none of

the controls, although formal neuropsychological

evaluations were not performed (P 5 0.082, Kruskal-

Wallis test). Three PD patients with VH were taking

neuroleptics (D2 antagonists) that also have 5-HT2A

binding potential (olanzapine, quetiapine, thioridazine,

haloperidol, and levopromazine); 1 PD patient without

VH was taking chlorpromazine, and 2 PD patients

without VH were taking antiemetics with 5-HT2A an-

tagonist activity (metoclopramide and prochlorpera-

zine) (P 5 0.93, Mann-Whitney U test). Depression

was reported in 1 PD patient without VH. One PD

patient without VH, 1 PD patient with VH, and 2 con-

trol subjects were taking a tricyclic antidepressant

(P 5 0.61, Kruskal-Wallis test).

FIG. 1. Brain areas from which the sections included in the study were chosen are colored in black. From anterior to posterior, (A) orbitofrontal
cortex (BA11; AC: 248 mm); (B) striatum (AC: 210 mm); (C) inferolateral temporal cortex (BA21; AC: 12.0 mm); (D) motor cortex (BA4; AC:
117.2 mm); (E) SN (level of the mamillary bodies). All sections are coronal, except the SN, which is horizontal. AC, anterior commissure; BA,
Brodmann area; SN, substantia nigra.
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All PD patients were taking levodopa and other dopa-

minergic agents. Five PD patients were taking DA ago-

nists, 3 in the VH group and 2 in the nonhallucinating

group (P 5 0.66, Mann-Whitney U test). Two of the PD

patients without VH were taking a DA agonist with a 5-

HT2A effect (cabergoline and pergolide) (P 5 0.29,

Mann-Whitney U test). Potential 5-HT binding drugs

taken at the time of death are listed in Table 1.

[3H]-Ketanserin Binding in Human

Postmortem Brains

[3H]-Ketanserin binding levels across the different

brain areas are reported in Table 2 and illustrated in

Figure 2. In the control brains, the highest binding lev-

els were found in the frontal cortex, followed by the

temporal and the motor cortex. In these regions, spe-

cific binding represented �80 to 90% of total. The

lowest levels of [3H]-ketanserin binding were encoun-

tered in the SN, in which the nonspecific binding was

high (�50%).

In the inferolateral temporal cortex of PD patients

with VH, [3H]-ketanserin binding was increased by

45.6% compared with PD patients without VH (54.3

6 5.2 fmol/mg vs. 37.3 6 4.3 fmol/mg, respectively,

P 5 0.044, one-way ANOVA, F 5 3.93; P 5 0.039,

Tukey’s post hoc test) (Table 2, Fig. 3). There were no

significant differences in [3H]-ketanserin binding in

TABLE 2. 5-HT2A receptor levels across the studied brain areas

[3H]-Ketanserin binding (mean 6 SEM)

Controls (fmol/mg) All PD (fmol/mg) No VH (fmol/mg) VH (fmol/mg)

Orbitofrontal cortex (BA11) 46.2 6 12.0 45.8 6 4.1 42.1 6 3.3 58.6 6 6.2
Inferolateral temporal cortex (BA21) 42.7 6 5.4 50.4 6 4.1 37.3 6 4.3 54.3 6 5.2a

Motor cortex (BA4) 41.2 6 2.6 54.4 6 5.1b 50.9 6 9.4 57.8 6 5.7
Striatum 33.8 6 4.0 40.2 6 3.4 35.3 6 5.6 45.1 6 3.4
Substantia nigra 14.2 6 3.1 18.5 6 3.3 17.0 6 5.6 20.0 6 4.4

aP 5 0.039 between PD patients with VH and PD patients without VH.
bP 5 0.0297 between PD patients and controls.

FIG. 2. Autoradiograms representative of [3H]-ketanserin binding levels on the sections studied. The top row represents the total binding,
whereas the bottom row is the nonspecific binding. As illustrated, nonspecific binding is relatively low in the temporal cortex (D) and the striatum
(E). However, nonspecific binding was 50% in the SN (F). The total binding was higher in the temporal cortex (A) than in the striatum (B). The
lowest levels (after subtraction of the nonspecific binding) were encountered in the SN (C). These pictures were taken following exposition in a
MicroImager for 12 hours. Scale bar: 2 mm. SN, substantia nigra.
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the frontal cortex, motor cortex, striatum, and SN

between any of the groups (P 5 0.149 for the frontal

cortex, 0.223 for the motor cortex, 0.139 for the stria-

tum, and 0.637 for the SN, one-way ANOVA). These

results are expanded in Table 2.

When all PD brains (with and without VH) were

combined, there was a significant increase in [3H]-

ketanserin binding levels in the motor cortex when

compared with the control group (54.4 6 5.1 fmol/mg

vs. 41.2 6 2.6 fmol/mg, respectively; P 5 0.0297, t 5
2.42, Student’s t test). No significant differences were

found in the other brain regions when PD patients

were pooled as a single group compared with control

(P 5 0.631 for the temporal cortex, 0.731 for the fron-

tal cortex, 0.214 for the striatum, and 0.321 for the

SN, Student’s t test).

DISCUSSION

This study demonstrates that 5-HT2A receptor bind-

ing is increased in the inferior temporal cortex of PD

patients with VH compared with PD patients without

VH. This suggests that enhanced 5-HT2A-mediated

neurotransmission might underlie the pathophysiology

of VH, and 5-HT2A antagonists may be useful in the

treatment of VH in PD.

Technical Considerations

Ketanserin has some affinity for the a1 adrenergic

receptors and for the VMAT. Binding to these sites

is unlikely to be a component of the binding

observed as we included unlabeled prazosin and tet-

rabenazine to block these receptors. In addition,

ketanserin binds to histaminergic-1 (H1) receptors

with a Ki of 10 nM.19 However, as the concentration

of ketanserin used in this study was low, i.e., 2.5 nM,

it is unlikely that binding to the H1 receptors was

significant, as previously demonstrated in rat cerebral

cortex.22

The levels of 5-HT2A receptors in control brains

were comparable to prior studies in human brain tissue.

Thus, [3H]-ketanserin binding levels were higher in the

cortex than in subcortical structures and higher in the

striatum than in the SN.28 The relative [3H]-ketanserin

binding densities across the different cortical areas

(BA4, BA11, and BA21) were also comparable to those

obtained by Pazos et al.28 The absolute levels obtained

in the control brains (from 14.2 6 3.1 to 46.2 6
12.0 fmol/mg in the SN and frontal cortex, respec-

tively) were in the same order as those obtained by

Oquendo et al.,24 although lower than those of Pazos

et al.28 Part of this discrepancy may due to the fact

that Pazos et al. did not attempt to block the a1 recep-

tors and the VMAT.

FIG. 3. Autoradiograms illustrating the different levels of [3H]-ketanserin binding in the 3 patient groups studied. The upper row (A–C) repre-
sents the temporal cortex and the lower row (D–E) represents the motor cortex. As illustrated, in the temporal cortex, there was no difference in
[3H]-ketanserin binding density between the control patients (A) and PD patients without VH (B). However, [3H]-ketanserin binding is darker,
hence higher, in the temporal cortex of PD patients with VH (C). In the motor cortex, [3H]-ketanserin binding levels are lower in the control
group (D) when compared with either the PD patients without or with VH (E and F, respectively). These pictures were taken following exposition
in a MicroImager for 12 hours. Scale bar: 2 mm.
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Patient Characteristics

The number of patients included in our study,

although relatively small (17, i.e., 6 PD patients with

VH, 6 PD patients without VH, and 5 age-matched

controls), is in accordance with prior postmortem stud-

ies published in the literature.29 This number allows

statistical analysis using a minimum number of sam-

ples. PD patients with and without VH were matched

as far as possible for age, sex, and duration of disease.

However, limitations of pathological studies with retro-

spective collection of clinical data may result in clini-

cal variability of some disease parameters between the

two groups. Thus, potential confounders that may

affect 5-HT2A receptor binding include anxiety and

depressive symptoms, use of 5-HT binding medica-

tions, and cognitive impairment.

The presence of significant anxiety and depression

in PD may affect 5-HT2A receptor levels, as cortical

5-HT2A receptors are implicated in anxiety.30 In gen-

eral, 5-HT levels are lower in PD patients with depres-

sion, suggesting possible compensatory upregulation of

postsynaptic cortical receptors. Indeed, postmortem

studies have shown a lower density of neurons in the

dorsal raphe nucleus in depressed versus nondepressed

PD patients,31 and 5-HT metabolite levels, in CSF, are

reduced in depressed PD patients.32 In our study,

depression was reported in 1 subject in the PD with

VH group and 2 in the non-VH group, with alcoholism

and impulse control disorder in 2 others; however, it is

possible that such symptoms were underreported, and

the small size of our groups precluded subgroup analy-

sis.

Another potential confounder is the use of 5-HT

binding medications. Indeed, antidepressants, which

elevate the endogenous levels of 5-HT, are likely to

downregulate 5-HT2A receptors, whereas antipsychotics

and antiemetics, which antagonize these receptors, are

likely to upregulate them. However, similar numbers

of patients in both PD groups and controls had expo-

sure to antidepressants, antipsychotics, or antiemetics.

The fact that PD patients, both with and without VH,

were taking these drugs possibly renders the two

groups equally susceptible to such a variation in the 5-

HT2A levels and makes it less likely that 5-HT2A levels

of one group will be disproportionately affected when

compared with the other group. However, further stud-

ies may be needed to clarify this potential confounder.

DA agonists may also affect 5-HT2A receptors, in

particular cabergoline and pergolide, which possess

5-HT2A agonist action,33 and could downregulate the

levels of 5-HT2A receptors. As previously mentioned,

there was no difference between the two PD groups in

terms of individuals taking DA agonists. However,

exact doses and duration of use were not available. In

the PD with VH group, 1 patient received cabergoline

and 2 received pergolide. Interestingly, as these drugs

could potentially downregulate the levels of 5-HT2A

receptors, they would have been likely to decrease

5-HT2A receptor levels in the PD with VH group to a

greater extent than in the PD without VH group and

might have decreased the extent of the difference we

found.

The presence of cognitive impairment is also a

potential confounding factor, as PD patients with VH

are more at risk of developing subsequent dementia.3

However, a recent postmortem study investigating 5-

HT2A receptor binding, using [3H]-ketanserin, reported

no correlation with cognitive impairment in patients

with vascular dementia.34

Abnormal 5-HT2A-Mediated Neurotransmission in

Parkinsonian Patients With VH

The 5-HT system is affected in PD. Hence, seroto-

nergic neurons of the brainstem, which provide diffuse

5-HT innervation to the brain, undergo degenera-

tion.35,36 This results in a decrease in 5-HT levels in

several brain areas.37–39 In all of these brain regions,

the decrease in 5-HT is not as pronounced as the DA

decrease. Thus, simplistically, the increase in 5-HT2A

receptor levels might represent a mechanism by which

the brain attempts to compensate for the reduced ambi-

ent 5-HT levels.

In addition to the decrease in 5-HT, the decrease in

DA could also contribute to increased 5-HT2A receptor

levels. Indeed, in the 6-hydroxydopamine-lesioned rat,

reduced DA levels secondary to the destruction of the

nigrostriatal pathway led to an increase of 5-HT2A re-

ceptor levels in the striatum.40,41 Thus, DA levels seem

to exert some regulatory feedback on 5-HT2A receptor

levels. This might be explained by the fact that DA

can bind to a variety of 5-HT receptors, including 5-

HT1A, 5-HT2A, 5-HT2C, and 5-HT3 receptors.42–44 DA

acts as a partial agonist at the 5-HT2A receptors.44

This interaction between DA and serotonergic recep-

tors might be relevant to the pathogenesis of VH in

PD. Indeed, in PD, it was shown that, following levo-

dopa administration, the drug is taken up by the raphe

neurons, metabolized into DA, and released into the

striatum by serotonergic terminals, acting as a ‘‘false

neurotransmitter.’’45,46 The pulsatile administration of

levodopa and the degree of DA depletion are linked to

the development of dyskinesia.47 A similar mechanism
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could account for the development of DA-related VH,

in which DA released from the 5-HT terminals would

intermittently stimulate the 5-HT2A receptors.

This hypothesis might also explain why VH tend to

occur late in the disease process. Indeed, as the 5-HT

system is not as affected as the DA system during the

disease, it might take longer to deplete the amount of

5-HT below a critical threshold. Once this threshold is

reached, intermittent nonphysiological stimulation of

5-HT2A receptors by the levodopa-derived DA might

lead to the appearance of VH.

Increased 5-HT2A Receptor Levels in the

Inferolateral Temporal Cortex of Parkinsonian

Patients With VH

The temporal cortex is part of the ventral visual

stream and plays a role in the recognition of objects

and faces48,49 as well as in auditory and visual inte-

gration.50,51 As previously mentioned, degenerative

changes occur in the temporal lobe of PD patients with

VH, and Lewy bodies have been documented.16

Another study demonstrated hippocampal atrophy in

demented PD patients with VH.52 Thus, the temporal

lobe appears to be critically involved in visual process-

ing, and in PD the integrity of this important visual

processing area is affected. Under these conditions, an

impaired 5-HT2A-mediated neurotransmission might

contribute to the genesis of VH. Indeed, we have also

shown in a pilot positron emission tomography scan

study that there is enhanced [18F]-setoperone binding

in the inferior temporal cortex in age- and sex-matched

groups of PD patients with and without VH.53

However, altered 5-HT2A-mediated neurotransmis-

sion might also occur beyond the inferior temporal cor-

tex, as non-significant trends toward increases were

encountered in both frontal cortex and striatum, when

PD patients with VH were compared with PD patients

without VH (P 5 0.142 and 0.225, respectively,

Tukey’s post hoc test). Because these increases repre-

sent only trends, it is hard to fully appreciate their bio-

logical relevance; however, we speculate that they are

linked to a broader disturbance in 5-HT2A neurotrans-

mission and could thus be associated with more severe

VH.

Increased 5-HT2A Receptor Levels in the Motor

Cortex of Parkinsonian Patients

As discussed above with respect to the inferior tem-

poral cortex, the finding of increased 5-HT2A receptor

levels in the motor cortex may represent a compensa-

tory change due to degeneration of 5-HT innervation

in PD. Interestingly, in the striatum, another key struc-

ture involved in motor processing,54 there was a non-

significant trend toward an increase in 5-HT2A receptor

levels when PD patients were compared with controls.

This increase in the motor cortex, and perhaps stria-

tum, might be related to the development of motor

fluctuations, including dyskinesia. Indeed, 5-HT2A

receptors were shown to be involved in movement in

the rat and the rabbit.55,56 Pharmacological studies

have also suggested that enhanced 5-HT2A-mediated

neurotransmission could be involved in the pathophysi-

ology of dyskinesia. Hence, compounds with an antag-

onist action at the 5-HT2A receptors were shown to

reduce dyskinesia in parkinsonian monkeys57 and

humans.58 However, further studies are needed to

define more clearly the fate of 5-HT2A receptors in

LID.
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